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ABSTRACT

The Rapid Update Cycle (RUC), an operational regional analysis–forecast system among the suite of models
at the National Centers for Environmental Prediction (NCEP), is distinctive in two primary aspects: its hourly
assimilation cycle and its use of a hybrid isentropic–sigma vertical coordinate. The use of a quasi-isentropic
coordinate for the analysis increment allows the influence of observations to be adaptively shaped by the potential
temperature structure around the observation, while the hourly update cycle allows for a very current analysis
and short-range forecast. Herein, the RUC analysis framework in the hybrid coordinate is described, and some
considerations for high-frequency cycling are discussed.

A 20-km 50-level hourly version of the RUC was implemented into operations at NCEP in April 2002. This
followed an initial implementation with 60-km horizontal grid spacing and a 3-h cycle in 1994 and a major
upgrade including 40-km horizontal grid spacing in 1998. Verification of forecasts from the latest 20-km version
is presented using rawinsonde and surface observations. These verification statistics show that the hourly RUC
assimilation cycle improves short-range forecasts (compared to longer-range forecasts valid at the same time)
even down to the 1-h projection.

1. Introduction

Many hazardous weather events are difficult to fore-
cast even with very short lead time. Specific examples
include winter precipitation, convective storms, clear-
air turbulence, icing, and low ceiling and visibility. Ac-
curate short-term forecasts of these phenomena are
clearly important for the protection of life and property
and also have significant economic value. Potential ap-
plications include aviation (air traffic management,
flight routing, and estimated fuel needs), agriculture,
recreation, and power.

Many different observations have become available
over the United States (and globally), with frequencies
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of an hour or less. These include commercial aircraft,
wind profilers, geostationary satellites, radars, ground-
based GPS, and automated surface reports. The avail-
ability of these observations facilitates high-frequency
updating of short-range numerical forecasts, with the
expectation that forecasts initialized with more recent
observations will be more accurate.

The Rapid Update Cycle (RUC), an operational me-
soscale data assimilation and numerical forecast system
run at the National Centers for Environmental Prediction
(NCEP), is designed to provide this type of frequently
updated numerical forecast guidance. The RUC runs at
the highest frequency of any forecast model at NCEP,
assimilating recent observations to provide hourly up-
dates of current conditions (analyses) and short-range
numerical forecasts. The RUC is unique among oper-
ational numerical weather prediction (NWP) systems in
two primary aspects: its hourly forward assimilation
cycle and its use of a hybrid isentropic–terrain-following
vertical coordinate for both its assimilation and forecast
model components.

The first operational implementation of the Rapid Up-
date Cycle (RUC1) occurred in 1994 (Benjamin et al.
1994), with a 3-h assimilation cycle (Benjamin et al.
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TABLE 1. A history of spatial resolution and assimilation frequency
in implementations of the operational Rapid Update Cycle at NCEP.

Model/
assimilation

system
Horizontal
resolution

Number of
vertical levels

Assimilation
frequency

Implemented
at NCEP

RUC1
RUC2
RUC20

60 km
40 km
20 km

25
40
50

3 h
1 h
1 h

Sep 1994
Apr 1998
Apr 2002

FIG. 1. Schematic of 1-h Rapid Update Cycle operational configuration at NCEP in early 2003.

1991) in which a new analysis was produced every 3
h using the previous 3-h forecast as a background. Major
upgrades (Table 1) were made in horizontal and vertical
resolution in 1998 (RUC2) and 2002 (RUC20). The
2002 version (hereafter RUC) employs 20-km horizon-
tal resolution, 50 vertical levels, and a 1-h assimilation
cycle.

In this paper we describe the RUC cycle and assim-
ilation methods, discuss issues relevant to high-fre-
quency assimilation, and illustrate the RUC forecast im-
provement that occurs through the high-frequency as-
similation of recent observations. A companion paper
(Benjamin et al. 2004) describes the RUC forecast mod-
el in detail, with emphasis on the hybrid isentropic-
sigma coordinate.

In section 2, the RUC 1-h cycle design is described,
along with a discussion of two important issues for high-
frequency intermittent assimilation: noise control via
application of a digital filter and grouping of observa-
tions into time windows. Section 3 follows, with specific
information on the current operational version of the
RUC, including horizontal and vertical domain, the def-
inition of the hybrid isentropic–sigma coordinate, and
the types of observational data utilized. An overview
of the RUC unified analysis framework is given in sec-

tion 4, along with implementation details for both the
optimal interpolation (OI; operational in early 2003) and
three-dimensional variational data assimilation
(3DVAR; operational as of 27 May 2003) techniques.
Section 4 also includes a discussion of the background
error covariances in hybrid isentropic–sigma coordi-
nates. In section 5, surface and upper-air verification
results are presented for RUC forecast projections rang-
ing from 1 to 24 h. Using these results, the ability of
the RUC to improve short-term forecast skill through
the use of hourly data assimilation is assessed. Conclu-
sions and future plans for the Rapid Update Cycle are
provided in section 6.

2. Design of the RUC 1-h assimilation–forecast
cycle

The RUC uses a forward intermittent assimilation
cycle, as depicted in Fig. 1. Every hour, recent obser-
vations are assimilated using the previous 1-h RUC
model forecast as a background to produce a new es-
timate of 3D atmospheric fields. Specifically, the ob-
servation-minus-forecast residuals (innovations) are an-
alyzed to produce an estimate of the 3D multivariate
forecast error field, also called the analysis increment.
This analysis increment is added to the 1-h forecast
background to produce the new analysis. The 1-h fore-
cast contributes information from previous observations
into the current analysis through the filter of the forecast
model. The observation types used by the RUC are dis-
cussed in section 3b and summarized in Table 2.

The design of a prototype RUC [known then as the
Mesoscale Analysis and Prediction System (MAPS)] 3-
h assimilation cycle based on a pure isentropic coor-
dinate and 80-km horizontal resolution was described
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TABLE 2. Observational data used in the RUC as of spring 2003.

Data type ;Number Frequency

Rawinsonde (including special obs)
NOAA 405-MHz profiler wind
Boundary layer (915 MHz) profiler windd

RASS virtual temperaturesd

VAD winds (WSR-88Ds)a

80
31
24
10
110–130

/12 h
/ 1 h
/ 1 h
/ 1 h
/ 1 h

Aircraft (ACARS)b (wind, temperature)
Surface/METAR—land (V, psfc, T, Td)
Surface/Mesonet—landd

Buoy
GOES precipitable water

1400–4500
1500–1700
2500–4000
100–150

1500–3000

/ 1 h
/ 1 h
/ 1 h
/ 1 h
/ 1 h

GOES cloud-drift winds
GOES cloud-top pressure/temperature
SSM/Ic precipitable water
GPS precipitable waterd

Ship reports
Reconnaissance dropwinsonde

1000–2500
;10 km resolution
1000–4000
200
5–40
0–10

/ 1 h
/ 1 h
/ 6 h
/ 1 h
/ 3 h
/variable

a Weather Surveillance Radar-1988 Doppler.
b Aircraft Communications, Addressing, and Reporting System.
c Special Sensor Microwave Imager.
d At FSL only as of Oct 2003.

by Benjamin et al. (1991). The first version of the RUC
running at NCEP (from 1994 to 1998) also used a 3-h
assimilation cycle, thus missing two-thirds of the hourly
observations. Both of these 3-h cycles were continuous,
in the sense that RUC forecasts were always used as
the background for the next analysis. This internal cy-
cling of regional models has become more common
since that time, with the NCEP Eta Data Assimilation
System (EDAS) changing to fully cycled atmospheric
variables in 1998 (Rogers et al. 1999).

The RUC intermittent assimilation procedure falls
within a class of schemes that include all sequential data
assimilation methods (specifically including optimum
interpolation, 3DVAR, and nudging schemes). As such,
it can be interpreted in the general framework of Kalman
filtering (Daley 1991, section 13.3). In the Kalman fil-
tering approach [using the unified notation of Ide et al.
(1997)], a forecast step (M) is used to advance the model
state (x) from analysis (xa) or forecast (x f ) and forecast
error covariance (P f ) in time:

f ax (t ) 5 M [x (t )], (1)i21i i21

f a TP (t ) 5 M P (t )M 1 Q(t ), (2)i21 i21i i21 i21

where Q is the model error covariance. This is followed
by an analysis step to update the model state and anal-
ysis error covariance (Pa):

a fx (t ) 5 x (t ) 1 K d , (3)ii i i

a fP (t ) 5 (I 2 K H )P (t ), (4)i ii i

where

o fd 5 y 2 H [x (t )]ii i i (5)

is the innovation vector, y is the observation vector, H
is the forward transformation from the model to the

observation (including interpolation and variable trans-
formation), and

21f T f TK 5 P (t )H [H P (t )H 1 R ]i i i i ii i (6)

is the Kalman gain, and R is the observation error co-
variance matrix.

Because Kalman filtering in its original formulation
is not practical for application in present numerical fore-
casting systems, some simplification is necessary to de-
velop realizable data assimilation systems. As noted by
Bennett (1992, p. 83) and elaborated in detail in Rob-
inson et al. (1998), the nudging method can be consid-
ered as a special simplified Kalman filter with a gain
matrix K that is diagonal and constant in time. Similarly,
optimum interpolation/3DVAR-based intermittent as-
similation, as applied in the RUC, is another special
case of the Kalman filter with empirically deduced fore-
cast error covariance matrices (Robinson et al. 1998).
In the RUC assimilation cycle, the forecast error co-
variances are not advanced forward in time, but are used
in an adaptive manner resulting from the adaptive hybrid
isentropic–coordinate formulation [see section 4 in this
paper; also, Benjamin (1989)]. A similar approach,
which does not use the adaptive model coordinate sys-
tem but makes use of the background potential tem-
perature field, was proposed in Daley and Barker (2001)
and in Riishojgaard [1998, his Eq. (16)] to introduce
anisotropic correlation structures.

Two key issues associated with high-frequency for-
ward assimilation are now discussed: control of noise
in the very short-range (1 h) forecasts used as the back-
ground for subsequent analyses and time window design
for grouping observations assumed to be valid at the
analysis time.
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FIG. 2. Noise parameter over a single time step (30 s) in the RUC
model with 3DVAR or OI analysis, both with and without application
of DFI. For the case with initial conditions at 1200 UTC 19 Nov
2002, data points taken every 30 min of integration.

a. Noise control for background forecast

Without proper control of spurious gravity waves dur-
ing the initial forecast hour, an intermittent hourly as-
similation cycle will accumulate noise and imbalance,
resulting in poorer performance than that from a less
frequent assimilation cycle. Imbalances in the analyzed
fields can be removed through initialization procedures,
but the resultant changes to mass and wind may be
significant compared to the analysis increment. This
poses a particular challenge for high-frequency meso-
scale assimilation systems such as the RUC, in that me-
soscale balance in the analysis increment is difficult to
achieve, yet the 1-h forecasts must appropriately match
observations valid 1 h later.

This challenge is overcome in the RUC through use
of an adiabatic digital filter initialization (DFI; Lynch
and Huang 1992) with an optimal filter (Huang and
Lynch 1993). This initialization is well suited to the
RUC model, for which it is difficult to diagnose normal
modes because of the hybrid isentropic-sigma coordi-
nate. In the RUC model, before each forecast, forward
and backward adiabatic integrations of about 35 min are
performed. Using the optimal digital filter, a weighted
mean of the dynamic variables over the forward/back-
ward integrations is then introduced as the actual initial
condition for those variables. There is no filtering of
moisture fields at this time. To monitor the effects of
the DFI on the RUC model, the mean absolute surface
pressure tendency (N1 in Huang and Lynch 1993) is
calculated as

x,y

DpsfcN 5 . (7)1 ) )Dt

Figure 2 shows the N1 parameter for a set of 6-h RUC
model forecasts initialized with and without the DFI.
At the first forward model time step (following the ini-
tialization, if performed), the N1 parameter is reduced
from 8.7 to 3.1 hPa h21 with DFI for an OI analysis
and from 5.1 to 2.7 hPa h21 for a 3DVAR analysis (both
analyses using the same background field and obser-
vational data). The model noise is also substantially
reduced at the 1-h output time [5.2(3.4) to 1.6(1.4) hPa
h21 for OI (3DVAR) results]. These results are consis-
tent with those shown for the European High Resolution
Limited Area Model (HIRLAM) system (Fig. 18 of Gus-
tafsson et al. 2001). This rapid (less than 1 h) reduction
in gravity wave activity helps reduce aliasing in sub-
sequent hourly analyses. Of course, these noise values
are also a measure of the multivariate balance in the
RUC analysis (discussed further in section 4) and the
degree of numerical diffusion in the RUC model [very
small, as described in Benjamin et al. (2004)].

b. Observation time windows

Aircraft observations are an especially important
high-frequency data source for the RUC assimilation

cycle; however, their distribution in space and time is
irregular and dependent on the route structure of the
commercial air carriers. The effective horizontal reso-
lution of the aircraft observations can be varied by
changing the duration of the time window within which
they are grouped, but there is a trade-off between the
spatial and temporal resolution. Aliasing is unavoidable
with any discrete observational network in that small-
scale waves will often be misrepresented as large-scale
waves (Daley 1991, section 3d). The RUC is certainly
vulnerable to problems with aliasing because of its re-
liance on aircraft data and the 1-h time windows cur-
rently assumed in its assimilation cycle. Thus, some
attention is given in this section to the effects of time
windowing on aliasing. These issues are discussed be-
low in terms of aircraft data, but are equally valid for
other observations of opportunity, such as ship data, and
even the effects of ascent/descent times for rawinsonde/
dropwinsonde soundings.

A temporal error is introduced in the assimilation if
an observation is assumed to be valid at an analysis
time that is not equal to the original observation time.
This error can be reduced by using the first guess at the
appropriate time (FGAT; e.g., Huang et al. 2002) to
obtain a correct innovation. However, another compo-
nent of this temporal error remains, the grouping of
asynoptic innovations as if they were valid at the same
time. Four-dimensional variational data assimilation
(4DVAR) schemes avoid both portions of this temporal
error by simultaneously fitting each observation along
the model trajectory with time-appropriate fields (Rabier
et al. 2000).

In the past, the combined temporal error has been
commonly accepted in the intermittent data assimilation
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FIG. 3. Time window width as a function of two parameters for
hypothetical time–space (1D) distribution of aircraft reports as de-
scribed in section 2b(1). Solid lines and open circles show the fraction
of jet streak wavelength l (assumed as 480 km) moved over time
windows of different duration for propagation speeds of 0, 10, and
30 m s21 (corresponding to vertical axis on left). Dotted line shows
mean observation spacing from this hypothetical distribution of air-
craft reports evenly distributed in time as a function of time window
width (corresponding to the vertical axis on the right).

systems utilized by many operational centers. In these
schemes, observations are grouped within a time win-
dow several hours wide centered around an analysis time
(e.g., Lorenc et al. 2000). A similar error occurs for
assimilation schemes in which model forecasts are
nudged toward observations (e.g., Stauffer and Seaman
1990, 1994; Leidner et al. 2001; Lorenc et al. 1991).
Observations are assumed to be valid throughout the
nudging time window, which is typically a few hours
wide. The time validity problem becomes more signif-
icant as the resolution of the assimilation system is in-
creased.

1) THE TRADE-OFF BETWEEN SPATIAL AND

TEMPORAL RESOLUTION

A first-order solution to the time validity problem
with aircraft data is to decrease the length of time win-
dows for either intermittent or nudging data assimila-
tion. For intermittent data assimilation, this also implies
more rapid cycling and more frequent analyses. If the
time window is decreased, the average time difference
between the analysis time and observation time will also
be decreased, which is clearly advantageous. Unfortu-
nately, this also leads to a decrease in the volume of
data valid within the time window. As Daley (1991, p.
85) states, ‘‘the local data density is time dependent’’
in the actual global observing system. Since the purpose
of using observations within data assimilation is to cor-
rect background forecast error, the observation density
must be sufficient to resolve that error on the scales for
which a valid analysis is required. This effect is dis-
cussed briefly in the conclusion section of Macpherson
(1991).

The analysis of a propagating feature in the forecast
error field will suffer some kind of spatial distortion
(stretching, compression, other) from the true pattern if
defined with time-windowed asynoptic observations
within that feature. Consider a simple case in which the
observations are taken sequentially in the direction of
the error pattern translation. For a slow-moving (10 m
s21) error pattern, a 3-h window of observations within
the error pattern can result in an apparent stretching of
100 km, even assuming steady-state propagation of the
error feature. For a faster-moving (30 m s21) feature,
for instance, one associated with a jet streak, a 100-km
stretching error can result with only a 1-h time window.
The observation density, analysis grid resolution, and
scale and propagation speed of features to be resolved
in an analysis all limit the size of the observation time
window at its lower end. All of these same factors will
also influence the nature of the distortion of the feature
in the analysis increment.

This trade-off between spatial and temporal resolution
for a given aircraft data time window is depicted in Fig.
3. In this example, the target phenomenon for this one-
dimensional analysis is assumed to be a jet streak with
a 480-km wavelength (l), requiring an observation

spacing of 30 km to resolve the feature with 16 data
points. It is also assumed that a 6-h window of aircraft
data (evenly distributed in time and space, not like the
actual distribution of reports from a single aircraft) pro-
vides enough reports to resolve this feature with 30-km
resolution. The trade-off between spatial and temporal
resolution is critically dependent on the phase speed of
the feature. If the jet streak is stationary, one can set
the time window at infinity to obtain infinitely high
horizontal resolution. If the jet streak is moving at the
modest speed of 10 m s21, it has propagated 22% of its
own wavelength in a 3-h window and 45% in a 6-h
window, a substantial stretching deformity error. For a
rapidly moving (30 m s21) mesoalpha-scale jet streak,
even the 3-h window allows the feature to move 67%
of its own wavelength. This error is demonstrated within
the U.K. Met Office (UKMO) repeated insertion (nudg-
ing) assimilation system (not in operational use since
October 1999) by Barwell and Lorenc (1985, their Fig.
5a and discussion on p. 116) for a specific case and by
Macpherson (1991, his Fig. 8) for a mean analysis. The
1-h and 30-min windows greatly reduce the distortion,
but the mean observation spacing is also considerably
reduced (Fig. 3). This illustrates that if observations
distributed through time, such as aircraft data, are bro-
ken into windows that are too small, they will be as-
similated less effectively. This effect is described in
greater detail in the next section.

2) A DEMONSTRATION OF THE CUMULATIVE EFFECT

OF NARROW ANALYSIS TIME WINDOWING

Consider a case if aircraft data were the only data
available. If the analysis time window is defined too
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FIG. 4. One-dimensional analysis experiment results. Observations are specified at even-numbered grid points from
the true field (curve A); no observational error perturbations are added. Differences from the background field (curve
B) are analyzed to give a final analysis in two different ways: all 10 observations are used simultaneously in an OI
analysis (curve C), and 10 successive analyses are made with 1 observation each (curve D). Gaussian scale for background
error correlation model is (a) 200, (b) 400, (c) 600, and (d) 800 km.

narrowly, the volume of aircraft data would be so small
that the analysis increments (corrections to forecasts)
could resolve the true forecast error on only the largest
scales. A simple experiment demonstrates this effect.
An intermittent analysis–forecast cycle may be written
as

ax (t) 5 A(t)M(a)A(t 2 a)M(a)A(t 2 2a) · · ·

M(a)A(t 2 na), (8)

where the analysis steps A alternate with model fore-
casts M, each of duration a hours to produce the analysis
state x at time t. If the frequency of assimilation is
increased and time windows are not allowed to overlap,
the amount of data in each time window must decrease.

Consider the extreme case in which each time window
contains only one observation and in which no forecast

steps are interleaved in a sequence of b successive anal-
yses. This procedure may be written

ax (t) 5 A(1) A(2) · · · A(b), (9)

where b is the total number of observations and number
of time windows. This experiment is different from the
iterative analysis procedure described by Bratseth
(1986), since here different observations are used in
each iteration.

The results of this successive analysis procedure [Eq.
(9)] are compared with a typical analysis in which all
of the b observations are used simultaneously (Fig. 4).
In this one-dimensional analysis experiment, 10 obser-
vations were used with a univariate OI analysis. The
observation error variance was assumed to be 0.08 times
the background error variance, observation errors are
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FIG. 5. Domain and terrain elevation of the 20-km version of the RUC. Contour elevation
is 200 m. Grid dimensions are 301 by 225 points.

assumed to be uncorrelated, and a Gaussian function
was used to describe the background error correlation.
These parameters were left unchanged for all experi-
ments, except that the scale coefficient in the back-
ground error correlation model was changed to show
the effect of scale on the two experiments. The order
of the observations was random in the successive anal-
ysis experiment.

If the assumed spatial correlation of background error
is narrow (Fig. 4a), then there is little difference between
the analysis with 10 observations (curve C) and the
result of 10 successive analyses with one observation
each (curve D). However, as the scale of the correlation
model becomes larger (Figs. 4b–d), the successive anal-
ysis experiment (curve D) is increasingly unable to re-
produce the correct field. Two beneficial characteristics
of the analysis with all data are lost in the successive
analysis experiment: the smaller scales in the back-
ground error cannot be resolved, and the interobser-
vation correlations are not accounted for. These corre-
lations are ordinarily accounted for in OI or variational
analysis, but the successive analysis technique forces
each observation to be considered as statistically in-
dependent of the others. In high-frequency data assim-
ilation with narrow time windows, a model integration
period will occur between each analysis step, and one
may expect further problems from model noise gener-
ated by each analysis increment. In the example shown
above, the trade-off between temporal and spatial res-
olution depends on the rate of change (phase speed,
rotation, growth/dissipation, etc.) of the feature itself.

For an analysis/forecast cycle, the trade-off also depends
on the rate of change of the forecast error pattern.

The problem described here concerning narrow time
windowing is relevant to nudging as well as intermittent
assimilation systems: if aircraft data are not allowed to
sufficiently overlap during the nudging period to give
adequate resolution of forecast error, then poorer results
may be expected. Thus, the 1-h cycle used in the RUC
makes it less vulnerable to the time validity problem
but more vulnerable to spatial aliasing.

3. Operational configuration for the 20-km version
of the RUC analysis

In the NCEP operational version as of early 2003, the
RUC horizontal domain covers the contiguous 48 Unit-
ed States and adjacent areas of Canada, Mexico, and
the Pacific and Atlantic Oceans with a 20-km grid (Fig.
5). A Lambert conformal projection with a 301 by 225
rectangular gridpoint mesh is used. The grid length is
20.317 km at 358N. Because of the varying map-scale
factor from the projection, the actual grid length in the
20-km RUC decreases to as small as 16 km at the north-
ern boundary.

The surface elevation of the RUC is defined using a
slope envelope topography (also shown in Fig. 5). The
standard envelope topography is defined by adding the
subgrid-scale terrain standard deviation (calculated from
a 10-km terrain field) to the mean value over the grid
box. By contrast, in the slope envelope topography, the
terrain standard deviation is calculated with respect to
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FIG. 6. Vertical cross section of RUC hybrid isentropic–sigma co-
ordinate levels for 1800 UTC 14 Jan 2002. The cross section is
oriented approximately west–east through California on the left-hand
side, Colorado, and the Appalachian Mountains.

a plane fit to the high-resolution topography within each
grid box. This gives more accurate terrain values, es-
pecially in sloping areas at the edge of high-terrain re-
gions. It also avoids a tendency of the standard envelope
topography to project the edge of plateaus too far lat-
erally onto lower-terrain regions.

a. The RUC vertical coordinate

The RUC uses a generalized vertical coordinate con-
figured as a hybrid isentropic–sigma coordinate in both
the analysis and model. This coordinate is advantageous
in providing sharper resolution near fronts and the tro-
popause (e.g., Shapiro 1981; Benjamin 1989). Johnson
et al. (1993, 2000) have shown improved moisture trans-
port and reduced vertical diffusion in a global model
using a hybrid isentropic–sigma coordinate. In the RUC
hybrid coordinate introduced by Bleck and Benjamin
(1993), the pressure at each level is chosen either as
that corresponding to a predefined virtual potential tem-
perature (uy) value (an isentropic definition) or that cor-
responding to a minimum pressure spacing, starting up-
ward from the surface (a terrain-following definition).
The pressure at each level is chosen as the smaller of
the two values. The RUC hybrid coordinate is discussed
in much greater detail, including a table of reference uy

values, in Benjamin et al. (2004).
In the RUC analysis, the spatial influence of obser-

vations [3D structure of forecast error covariances; P f

in Eq. (2)] is largely defined in isentropic space, leading
to improved representation of airmass coherence and
frontal structure. However, the analysis is still per-
formed in a generalized vertical coordinate framework
and is applicable to other coordinate systems. These
characteristics are discussed in more detail in section 4.

The 20-km version of the RUC (Table 1) uses 50
vertical levels, with a reference uy value assigned to
each level ranging from 224 to 500 K. The reference
potential temperature spacing is 2 K between 294 and
322 K and 2–3 K from 270 to 355 K. This specification
allows a relatively fine u resolution through much of
the troposphere and lower stratosphere. The terrain-fol-
lowing pressure spacing is 2.5 hPa in the first layer and
maximizes at 15 hPa by the fifth layer above the surface.

A sample cross section of RUC native levels is dis-
played in Fig. 6. The cross section traverses the United
States, passing south of San Francisco, California,
through the eastern slopes of the Rocky Mountains in
Colorado (where a mountain wave is evident between
300 and 600 hPa) and through southern Virginia on the
East Coast. The cross section is for an RUC analysis
valid at 1800 UTC 14 January 2002. The typical higher
resolution near fronts and the tropopause using the RUC
coordinate is apparent in this figure. Nonisentropic co-
ordinates do not resolve these features as well. Also,
the tendency for more terrain-following levels in warm-
er regions is evident (over the Pacific Ocean on the left-
hand side of the figure, in this case). A classic cold

dome is evident over the central United States, with a
lowered tropopause and frontal zones extending to the
surface on both sides. Generalized analysis/model levels
that are isentropic in one part of the domain can become
terrain following in other parts of the domain.

b. Observational data assimilated in the RUC and
calculation of innovations

In order for a high-frequency assimilation cycle to
result in improved short-range forecasts, adequate high-
frequency observations must exist over the domain of
the analysis and forecast model. Over the last 10 years,
the volume of observational data over the United States
has increased, along with the sophistication of tech-
niques to assimilate those observations.

A summary of observational data available to the
RUC as of spring 2003 is shown in Table 2. A large
variety of observation types are assimilated, although
many of them are limited in horizontal or vertical spatial
coverage. The longest-standing atmospheric observing
systems, rawinsondes, and surface weather observations
are the only ones that provide complete observations of
wind, pressure, temperature, and moisture. High-fre-
quency wind observations above the surface are avail-
able from commercial aircraft (e.g., Moninger et al.
2003), wind profilers, satellite-estimated cloud motion,
and radars [velocity–azimuth display (VAD)]. High-fre-
quency temperature observations above the surface as-
similated by the RUC include commercial aircraft and
a few from the Radio Acoustic Sounding System
(RASS). High-frequency moisture observations above
the surface used in the RUC analysis are precipitable
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water retrievals from satellites [Geostationary Obser-
vational Environmental Satellite (GOES) and polar or-
biter] and from ground-based GPS (Wolfe and Gutman
2000; Gutman and Benjamin 2001) and GOES cloud-
top pressure/temperature retrievals (Schreiner et al.
2001). The ‘‘cutoff’’ time for availability of observa-
tions is very short with the RUC, generally about 20
min after the analysis valid time, except at 0000 and
1200 UTC when it is extended to 50 min to allow receipt
of rawinsonde data.

Most of the observations that are not subject to time
windowing (section 2b) are actually valid 15–30 min
before their labeled time. For instance, rawinsondes are
launched about 45 min before valid time, surface ob-
servations are taken 15 min before valid time, and wind
profiler hourly observations are hourly means centered
30 min before valid time. Accordingly, the time window
used in the RUC for aircraft and cloud-drift wind ob-
servations is a 1-h window centered 30 min before ‘‘val-
id’’ time. This 15–30-min offset between labeled and
actual valid time is present not only in the RUC but in
other operational systems initialized with the same ob-
servations. If a subhourly FGAT was used (as suggested
from results regarding 1-h persistence forecasts shown
in section 5a), this offset between labeled and actual
valid time for RUC grids should be accounted for.

The accuracy of an analysis is dependent on the ef-
fectiveness of algorithms used to match observations
with the background values (‘‘forward transforma-
tions,’’ H, in section 2) for calculation of observation-
minus-background innovations. These forward models
from the background to the observation may include
variable transformations. For near-surface observations,
they should also account for elevation differences be-
tween the background and observations using expected
boundary layer structure. For surface observations, this
treatment in the RUC analysis uses surface layer sim-
ilarity to match 2-m temperature and moisture obser-
vations and 10-m winds to the RUC background whose
lowest levels is at 5 m above the surface. Surface ob-
servations including a station pressure (from an altim-
eter setting) and station elevation are reduced to a sur-
face pressure at the model elevation and then to a height
innovation at the model surface pressure to be used in
the multivariate z/u/v analysis described in the next sec-
tion. Observations of pressure reduced to sea level are
not used in the RUC, since altimeter setting is less am-
biguous and more commonly available over North
America. Rawinsonde profiles from mandatory and sig-
nificant level data are further interpolated to each model
level, yielding additional data points. This forces the
analysis to fit the near-linear structures implied by the
absence of intermediate significant levels. The process-
ing of each observation type to provide the best match
between the observation and background is discussed
in detail by Devenyi and Benjamin (2003).

c. Lateral boundary conditions

For any limited-area model, the skill is increasingly
controlled by the lateral boundary conditions (LBC) as
the duration of a forecast increases. The LBCs for the
RUC model, both in operations at NCEP and runs at
the Forecast Systems Laboratory (FSL), are relaxed
(Davies and Turner 1977) toward the NCEP Eta Model
(Black 1994; currently initialized every 6 h), linearly
interpolated between 3-h output times. For RUC fore-
casts initialized at 0000 or 1200 UTC, the Eta Model
run used for LBCs is always that initialized 6 h earlier
(e.g., the 0600 UTC Eta run is used to prescribe LBCs
for the RUC run initialized at 1200 UTC). This choice
is made to provide RUC guidance to users as soon as
possible as opposed to running the RUC model after the
current Eta run is available. From a forecast skill stand-
point, a 24-h RUC forecast run in this real-time con-
figuration is controlled, to some extent, by the skill of
the 30-h Eta forecast. Similarly, 12-h RUC forecasts are
driven toward the information of the 18-h Eta forecasts
valid at the same time. RUC forecasts can also be run
using LBCs from Eta Model runs initialized at the same
time to provide a model intercomparison, but that was
not done for the results shown here. LBCs for the RUC
can be prescribed from other models of course, such as
the NCEP Global Forecast System (GFS) model, but
the Eta Model has been used for the RUC in operational
runs up to this point since it is available sooner and has
a higher horizontal resolution than the GFS model.

4. Unified analysis framework in a generalized
vertical coordinate

A unified framework for the RUC analysis has been
developed that is general in two regards: it uses the
vertical coordinate of the background model (hybrid
isentropic–sigma for the RUC but applicable to other
coordinates as well), and it can use solvers from either
OI or 3DVAR techniques. The analysis framework in-
cludes ingest and preprocessing of the observations de-
scribed in section 3, and the calculation of innovations
[discussed briefly in section 3 and in more detail by
Devenyi and Benjamin (2003)]. The background field
is usually the previous 1-h RUC forecast (Fig. 1) in its
native coordinate. Quality control is applied for obser-
vations, using the techniques described later in section
4e. The same data structure is used for observations,
innovations, and metadata (location, observation type,
etc.) rather than using different arrays for each obser-
vation type, allowing new observation types to be added
without necessarily requiring new arrays. Observation
and background errors are specified in the generalized
framework.

The background error spatial covariances in the RUC
analysis are defined in a quasi-isentropic space. Thus,
the influence of observations in correcting a background
is adaptive depending on the 3D thermal structure in
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TABLE 3. RUC native coordinate variables and modification in the RUC analysis; MV refers to multivariate mass/wind analysis and UV
to univariate analyses.

Variables in native RUC analysis Updating from observations in RUC analysis

p
uy

u, v
qy

q*

Pressure
Virtual potential temperature
Horizontal wind components
Water vapor mixing ratio
Hydrometeor mixing ratios (cloud water, ice, rainwater,

snow, graupel) and ice particle number concentration

MV analysis from z increment, hybrid adjust
MV analysis, UV uy analysis
MV analysis
Moisture analysis outer loop
Cloud analysis with GOES cloud-top data

Land surface variables
—

—
—

Soil temperature, snow temperature—top level

Soil moisture
Snow water equivalent

From MV and UV uy analysis increment at lowest
atmospheric level

Not modified
Not modified

(z calculated hydrostatically, all p/z obs
converted to z innovations at a given pressure)

the vicinity of the observations. The background error
correlations in the RUC OI for all variables are specified
as separable vertical and horizontal correlations between
points m and n:

m,nC 5 C (r )C ( | u 2 u | ),i,j h i,j y m n (10)

where Ch and Cy are the horizontal and vertical corre-
lations, r is the horizontal distance, and u is virtual
potential temperature [see similar equation in Riisho-
jgaard (1998)]. The RUC 3DVAR effectively uses the
same covariance structure shown in Eq. (10) in levels
resolved as isentropic levels but not in those resolved
as terrain-following levels (Devenyi and Benjamin
2003).

The hypothesis of horizontal and vertical separability
of background error covariances is less problematic with
the RUC quasi-isentropic coordinate system than in qua-
si-horizontal coordinate systems. Much of the vertical
covariance variation is projected onto insentropic levels
with the RUC coordinate, analogous to the projection
of vertical motion onto horizontal motion on sloping
isentropic surfaces in isentropic forecast models (see
Benjamin et al. 2004 for further discussion). Also, with
the RUC hybrid vertical coordinate system, the aspect
ratio (ratio of vertical and horizontal scales) approaches
zero for a completely adiabatic atmosphere. Benjamin
(1989) demonstrates the effects of the assumption that
the forecast error correlation structure is more horizon-
tally isotropic in the isentropic system than in height-
or pressure-based systems.

A multivariate mass/wind analysis with a balance
constraint using all wind and height innovations (in-
cluding those calculated from surface pressure obser-
vations at a given elevation) is carried out to obtain a
wind analysis increment field. The associated height
analysis increment (z9) is vertically differentiated to ob-
tain a virtual temperature increment. This temperature
increment is added to the background uy (virtual poten-
tial temperature) field, yielding an updated field that
reflects the multivariate analysis. A univariate uy anal-
ysis is then applied in which in situ temperature obser-

vations are assimilated (using background water vapor
mixing ratio if not available from the observation). A
surface pressure increment is also calculated from the
height increment at the lowest level from the multivar-
iate analysis step.

Next, the moisture field is analyzed univariately (us-
ing the logarithm of the water vapor mixing ratio as the
analysis variable). Two other moisture analysis proce-
dures are also carried out: first, the assimilation of
GOES cloud-top pressure [Benjamin et al. (2002b); de-
scribed further in section 4d] and, second, the assimi-
lation of integrated precipitable water (IPW) observa-
tions, using an OI-based columnar adjustment (Smith et
al. 2000). These three procedures are performed se-
quentially within each of two iterations of an outer mois-
ture analysis loop in which the moisture background
and innovations are updated after each procedure is ap-
plied. In this manner, a mutual adjustment between these
different observation types is forced.

A summary of fields updated in the RUC analysis is
presented in Table 3. Note that the upper level of soil
or snow temperature is also updated from surface air
temperature analysis increments to preserve the air sur-
face temperature difference from the background field.
[In general, the regional evolution of soil temperature
and moisture fields and snow water equivalent and
snowpack temperature fields has been found to give
satisfactory results in the RUC (Smirnova et al. 1997,
2000; Benjamin et al. 2004).] These fields are strongly
dependent on the accuracy of the series of 1-h forecasts
produced by the RUC and, therefore, vulnerable to pre-
cipitation spinup (or spindown) problems. (Verification
of RUC precipitation forecasts over a 24-h period ag-
gregated from a series of eight 3-h forecasts shows near-
ly equal accuracy to those summed from two 12-h fore-
casts; results not shown.) Hydrometeor fields are also
cycled and modified using the cloud analysis technique
described in section 4d, contributing to this result. Cur-
rent development efforts to add radar reflectivity to this
hydrometeor analysis (Kim et al. 2002) should further
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improve the RUC 1-h precipitation forecasts. The land
surface model and mixed-phase cloud microphysics
used in the RUC model are both described in more detail
in the companion paper by Benjamin et al. (2004).

Mapping of observations and background values to
vertical levels is carried out using the 3D pressure of
the background field, without regard to the algorithm
defining the vertical coordinate that resulted in the 3D
pressure field. As a final processing step (which is spe-
cific to the hybrid coordinate used in the RUC model),
a vertical regridding (interpolation) occurs for all var-
iables that restores them to the RUC hybrid isentropic-
sigma coordinate definition described in Benjamin et al.
(2004). (This is approximately a 10-line code section
that can be replaced by another vertical coordinate def-
inition, if necessary, such as a pure sigma-pressure def-
inition.)

Postprocessing of native RUC analysis fields is then
performed to diagnose many other variables, including
height (via hydrostatic integration), special level vari-
ables (freezing, maximum wind, and tropopause), cloud
top, ceiling, visibility, convection-related indices, po-
tential wind gust, and boundary layer height (Benjamin
et al. 2002a). Hourly time series of full output at selected
stations are created as part of the RUC postprocessing.

a. Three-dimensional optimum interpolation analysis

The optimal interpolation multivariate analysis used
in the RUC follows the unified analysis framework de-
scribed above, but with the following additions.

Observations are subjected to a superobservation pro-
cessing (Lorenc 1981) to prevent the use of pairs of
observations that are sufficiently close together to result
in an ill-conditioned observation–observation covari-
ance matrix (Benjamin 1989). Search tables are built to
allow a quick identification of all observations within
each grid volume. A ‘‘volume method’’ is used by which
a limited set of observations is used to influence a set
of grid points, to reduce the number of matrix com-
putations (Lorenc 1981). The search strategy to identify
observations (and residuals) to be used for each set of
grid points includes use of eight directional sectors and
a search for observations within a limited number of
vertical layers from the grid points for which an analysis
increment is to be computed. For generalized vertical
coordinate levels that happen to be isentropic, this ob-
servation selection will tend to occur along isentropic
surfaces. Up to 56 observations are chosen for the mass/
wind analysis in each analysis volume, and up to 16
observations for univariate analyses. These limits con-
fine the number of matrix inversion calculations and,
therefore, the computational requirement for the anal-
ysis. The multivariate mass/wind analysis uses a geo-
strophic coupling coefficient of 0.5, except near the sur-
face, where this coefficient is reduced to as low as 0.3.

Horizontal correlations of background error are de-
scribed using coefficients of a second-order autoregres-

sive (SOAR) function. Vertical correlations of back-
ground error in the RUC OI analysis are described ex-
plicitly as a function of potential temperature separation
(Benjamin 1989), as shown in Eq. (10) above. As with
any OI scheme in which limited numbers of observa-
tions are used for separate analysis volumes for which
solutions are made of the analysis increment, the pre-
scribed correlation models are truncated at the distances
at which observations are found.

The effect of the truncated background error covari-
ance model in the OI solutions with separate analysis
volumes is depicted in Fig. 7a, a vertical west–east cross
section of the u wind component analysis increment for
a case from May 2002. Discontinuities from this trun-
cation are apparent in both the horizontal and vertical
dimensions in Fig. 7a, in contrast with the continuous
analysis increment field produced by a 3DVAR analysis
(Fig. 7b) for the same case and observational data. The
effects of the small-scale noise produced by the trun-
cated background error covariance in the OI solution
are also evident in the mean surface pressure tendencies
in subsequent forecasts shown in Fig. 2. The reduced
noise at initial time steps and 1-h forecast times from
the 3DVAR analysis, even after application of a digital
filter initialization (section 2a) are related to these dif-
ferences in the spectra at short wavelengths between
analyses using the 3DVAR (fully 3D) and OI (with lim-
ited observations influencing different analysis vol-
umes) techniques. Gustafsson et al. (2001) also showed
a similar reduction in short-range forecast noise in re-
placing OI with a 3DVAR analysis and also attributed
this behavior to the use of limited observations in OI
(truncated covariances) versus global use of data in
3DVAR.

b. Three-dimensional variational analysis

The design of the 3DVAR version of the RUC anal-
ysis closely follows that applied in OI (see section
above). A detailed description of RUC 3DVAR is given
in Devenyi and Benjamin (2003); here we summarize
only its basic features. In the RUC 3DVAR, the standard
form of incremental cost function is minimized. The
control variables are streamfunction (c) and velocity
potential (x) (both scaled by grid distance), unbalanced
height, virtual potential temperature, and the natural log-
arithm of water vapor mixing ratio.

The analysis is performed on a 56-level modification
of the 50 native RUC hybrid sigma–isentropic model
levels. The isentropic projection for the RUC 3DVAR
is accomplished through mapping observations (and in-
novations) to k space (56 levels) using the 3D pressure
of the hybrid isentropic–sigma background 1-h RUC
forecast. Thus, the isentropic projection is present in the
RUC 3DVAR only in regions of the 3D background
resolved as isentropic levels (typically upward from 150
to 300 hPa above the surface). The actual variational
solution is fully generalized in 3D (i, j, k) space and



506 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 7. Vertical cross section (west–east across RUC domain) of magnitude of vector wind
(u and y) analysis increment for 1200 UTC 15 Jan 2002 using (a) OI analysis and (b) 3DVAR
analysis. Contour interval is 2.0 m s21. Vertical axis is RUC native coordinate level (k), and
horizontal orientation is west–east at approximately 408N. Figure is used qualitatively only.
Discontinuity near k 5 5 is from use of surface data only through lowest 5 levels in OI analysis
and mapping of native levels 1–4 into a single level in the 56-level 3DVAR solution.

has no isentropic or other coordinate dependencies. In
the present version, the analysis is performed on a coars-
er-resolution horizontal grid (grid distance is 80 km),
and the coarser-resolution analysis increment is inter-
polated back to the fine-resolution grid. This is a first
step toward the introduction of a multigrid technique in
the RUC 3DVAR.

In the multivariate mass/wind analysis step, balancing
is provided by linear regression using regression coef-
ficients computed from a history of previous RUC runs
(6- and 12-h forecasts valid at the same time) using the
so-called National Meteorological Center (NMC) meth-
od (Parrish and Derber 1992) in which forecast differ-
ences are used as a proxy for forecast errors to obtain
correlations between streamfunction and balanced
height. At present, no cross correlation between stream-
function and velocity potential is specified.

For most observation types, the observation operators
are simply linear interpolation operators. The obser-
vation standard deviation errors (measurement and rep-
resentativeness) are specified by diagonal matrices. The
matrix values are obtained from corresponding values
in the OI method.

The background error correlations are approximated
by convex linear combinations of digital Gaussian filters

with different filter scales, a method developed at NCEP
[for details see Purser et al. (2001)]. Based on this fil-
tering technique, approximate convolutions of a SOAR
correlation function are obtained for different variables
and vertical levels, and increment fields are computed.
Present real-time computer time restrictions limit our
scheme to two Gaussian filter applications in each space
direction for each variable. Different numerical exper-
iments were performed to obtain the optimal combi-
nation of filter weights. The full background error co-
variance matrix is applied in preconditioning (Derber
and Rosati 1989). Minimization is accomplished using
a simple conjugate gradient method.

c. Treatment of surface fields

The RUC 3D analysis is designed to produce an ef-
fective surface analysis, maintaining a close fit to the
observations without introducing unwanted noise in the
subsequent forecast. It uses all surface observations,
including temperature, dewpoint, surface pressure, and
winds (Table 2). By using a 1-h forecast background,
it can provide consistency with dynamical, boundary
layer, and land-use-related effects much better than that
in a surface analysis using a persistence forecast back-
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ground (Miller and Benjamin 1992). Operational re-
gional models, including the RUC, currently use a hor-
izontal resolution that resolves many terrain-related phe-
nomena too small to be resolved by the current surface
observation network in the United States. For this rea-
son, many near-surface effects are accounted for in the
RUC but not in persistence-based analyses, including
sea/land/lake breezes, mountain–valley circulations,
drainage winds, effects of variations in soil moisture,
vegetation type, land use, roughness length, snow cover,
land–water contrast, and cloudy/clear boundaries. Qual-
ity control (QC) is also improved for surface observa-
tions using a model background, since the model pro-
vides an independent assessment of surface conditions
and is, therefore, better able to identify errors repeated
every hour at a given station than a persistence-based
QC. The RUC analysis is also able to provide full dy-
namical consistency through coastal regions as opposed
to the persistence approach, which requires blending
with an external model in these areas (Fig. 3 of Miller
and Benjamin 1992).

As described in Devenyi and Benjamin (2003), all
station pressure (altimeter) and surface wind observa-
tions are used regardless of the difference between sta-
tion and model elevation. The station pressure is reduced
to the model elevation using the local lapse rate over
the bottom five levels in the background field (approx-
imately 20–25 hPa). Temperature and dewpoint obser-
vations are reduced, via the local lapse rate, from actual
station elevation to model terrain height, provided that
the reduction does not exceed 70 hPa. Fewer than 15
surface stations reporting within the RUC domain (as
of early 2003) do not meet this criterion, resulting in
discarding their temperature and dewpoint values.

Finally, the output fields of 2-m temperature and dew-
point from the RUC are the result of a further step in
postprocessing to a special terrain elevation field de-
signed to match elevations of surface stations (Benjamin
et al. 2002a). This procedure is essentially the inverse
of the forward model for surface observations of tem-
perature and dewpoint referred to in the previous par-
agraph. This step allows RUC analyses of 2-m temper-
ature and dewpoint to more closely match observations.

d. Cloud/hydrometeor analysis using GOES cloud-top
data

The RUC model produces explicit forecasts of mixing
ratios of cloud water, rainwater, ice, snow, and graupel
through a mixed-phase bulk cloud microphysics param-
eterization (Benjamin et al. 2004). These variables are
all cycled through the RUC assimilation cycle, as shown
in Table 3. Toward the goal of improved short-range
forecasts of cloud/hydrometeors, icing, and precipita-
tion, a technique for assimilating GOES cloud-top pres-
sure/temperature data from single fields of view was
introduced into the operational RUC in 2002 with the
20-km version. This technique is described in greater

detail by Benjamin et al. (2002b) and Kim and Benjamin
(2001). The previous RUC 1-h forecast provides a back-
ground for these hydrometeor fields, and the cloud anal-
ysis includes both clearing and building, starting with
the background fields. GOES cloud-top pressure gives
information on the presence or absence of clouds, but
not on cloud depth. Also, unless the top cloud layer is
broken, the cloud-top pressure cannot provide infor-
mation on multiple cloud layers. Thus, the RUC cloud/
hydrometeor assimilation technique is designed to use
this incomplete information. Where GOES data indicate
absence of clouds, the technique removes any hydro-
meteors and reduces water vapor mixing ratio to a sub-
saturation value. Where GOES data indicate the pres-
ence of clouds that are not in the RUC 1-h forecast,
cloud water and/or ice is added in a layer not exceeding
a 50-hPa depth. The water vapor mixing ratio in this
layer is saturated. Ice saturation is assumed for tem-
perature below 248 K and water saturation for temper-
atures above 263 K. In between these values, the sat-
uration vapor pressure varies linearly between the value
for ice at 248 K and the value for liquid water at 263
K. If the GOES retrieved cloud-top pressure is greater
than 620 hPa, the cloud-top pressure is rederived using
both the GOES cloud-top temperature and the RUC 1-
h temperature profile at the nearest grid point. The me-
dian values from the fields of view around each RUC
grid box are used. Cloud fraction is calculated with this
sampling into RUC grid volumes for later use in cloud
building/clearing criteria. The RUC cloud assimilation
includes safeguards to prevent level-assignment prob-
lems with convective and marine stratus clouds, as de-
scribed by Benjamin et al. (2002b).

e. Quality control of observations

Observation quality control in the RUC is primarily
based on a buddy check between neighboring obser-
vations. Before buddy check or other quality control
procedures proceed, gross quality control tests (range
limits, wind shear, lapse rate) are applied to all obser-
vations. The buddy check considers observation inno-
vations, the differences between the observation and the
background field interpolated to the observation point
[di in Eq. (5), section 2], instead of the observations
alone. This is an important distinction since it means
that any known anomaly in the previous forecast has
already been subtracted out, improving the sensitivity
of the QC procedure to actual errors. The RUC buddy
check is based on an optimum interpolation method
whereby an estimate at the observation point is made
from the innovations of a group of up to eight nearby
‘‘buddy’’ observations, similar to that described by Ben-
jamin et al. (1991). If the difference between the esti-
mated and observed innovations exceeds a predefined
threshold, the observation is flagged. For each obser-
vation, the QC check is repeated, removing one of the
buddies at a time to increase the robustness of the check.
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Because the RUC utilizes a partially flow-dependent
adaptive (quasi isentropic) background error structure,
its buddy check method has some adaptivity. As pointed
out by Dee et al. (2001), another option to the adaptive
buddy check is the application of locally adjusted
thresholds. Locality and adaptivity of the buddy check
ensures that the efficacy of quality control is less de-
pendent on global approximations introduced into the
parameterization of the optimum interpolation scheme.
Isolated observations where no buddies are available
are flagged if their innovation exceeds a variable-de-
pendent multiple of the background error.

Checks are also made for contamination of VAD and
profiler wind observations due to bird migration. Prior
to dissemination of the data, a careful check for bird
(and other) contamination in profiler winds is made at
the Profiler Hub in Boulder, Colorado. This check in-
cludes use of second-moment data to examine likelihood
of bird contamination. If the quality control flag pro-
duced by this check indicates suspicious data, the pro-
filer data at that level are not used. For VAD winds, no
second-moment data are available, so a more conser-
vative check is made. A solar angle is calculated, and
if the sun is down and the temperature is higher than
228C, VAD winds are not used if they have a northerly
component between 15 August and 15 November or a
southerly component between 15 February and 15 June.

5. Verification—Analysis and forecast fit to
rawinsonde and surface observations

The purpose of the Rapid Update Cycle is to use more
recent observations to produce more accurate short-
range forecasts than would otherwise be available. The
RUC is unique in its operational use of a very high-
frequency intermittent assimilation cycle (3-h intermit-
tent assimilation cycle from 1994 to 1998 and a 1-h
cycle from 1998 to present). While the use of more
recent observations should lead to improved short-range
forecasts, it is not a foregone conclusion that shorter-
range forecasts will be more accurate than longer-range
forecasts valid at the same time. If observations are
available at an update time but are very sparse and in-
troduce substantial aliasing (discussed in section 2b),
the shorter-range forecast will likely be worse than the
longer-range forecast at the same time. If wind-only
observations are available and inadequate provision is
made in the assimilation to produce a sufficiently bal-
anced wind/mass increment, it is again likely that the
short-range forecast will be worse than the longer-range
forecast. Whether or not this is so depends on the
amount, quality, and 3D spatial coverage of the high-
frequency observations, and the assimilation techniques
used. Of course, in the absence of any high-frequency
observations, a short-range forecast will provide no im-
provement over a longer-range forecast (e.g., a 3-h fore-
cast initialized with no additional observations is equiv-
alent to a 6-h forecast valid at the same time).

The mix of high-frequency (approximately hourly)
observations available over the United States (Table 2)
provides generally irregular and incomplete coverage.
Except for the profiler observations, wind observations
tend to be in the upper troposphere (aircraft; some cloud
drift) and in the lower troposphere (VAD; surface). Air-
craft ascent/descent profiles occur at least every 3 h near
only about 20 airport hubs. Frequent temperature ob-
servations are limited to aircraft and surface observa-
tions. Frequent moisture observations are only for ver-
tically integrated totals above the surface. Rawinsondes
provide a more complete network spatially (horizontally
and vertically) and include all basic variables (wind,
temperature, height, moisture) in full profiles, but are
‘‘low frequency’’ observations, generally available only
near 0000 and 1200 UTC.

In the two sections below, verification statistics are
presented for RUC forecasts of different durations
against observations from rawinsondes and surface re-
porting stations. Before starting, we note two aspects
about these statistical measures of short-range forecast
improvement. First, overall statistics mask much stron-
ger differences that may occur in individual cases. Sec-
ond, though the statistics here may be legitimately in-
tercompared since they use the same verifying obser-
vations and time period, it is problematic to compare
these with other sets of verification statistics over dif-
ferent time periods, different domains, different obser-
vations, or even different quality control standards for
those observations.

a. Upper-air verification against rawinsondes

Before considering forecast accuracy, observation fit
statistics for both OI and 3DVAR versions of the RUC
analysis (Fig. 8) for a period in November–December
2002 are first presented. This is one method to evaluate
the performance of the analysis procedures. Assumed
errors for rawinsonde observations are generally about
2.5–4 m s21 for wind, 0.58C for temperature, 5–10 m
for height (increasing with altitude above the surface),
and the equivalent of about 8% for relative humidity.
[A collocation study of rawinsonde and aircraft obser-
vations by Schwartz and Benjamin (1995) gives limits
on observation errors.] As expected, the fit to rawin-
sonde observations generally corresponds to these val-
ues. It may also be noted that this fit to the observations
is closer than that for the 1-h forecast shown in Fig. 9.
It is also apparent in Fig. 8 that the fit to observations
is comparable between the 3DVAR analysis and the OI
analysis. The slightly closer fit from 3DVAR is an in-
advertent effect, resulting from the tuning of back-
ground error in the 3DVAR analysis to produce an op-
timal 3-h forecast skill.

Evaluation of the overall accuracy of RUC forecasts
of wind, height, temperature, and relative humidity from
projections of different durations (1, 3, 6, 9, 12 h) is
presented in Fig. 9 for a period of almost 4 months from
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FIG. 8. RUC analysis fit to rawinsonde observations for both optimal interpolation and 3D variational versions for
the period from 18 Nov to 27 Dec 2002, using NCEP rawinsonde quality control flags. Rms vector difference or
standard deviation difference between observations and analyses: (a) wind (m s21), (b) height (m), (c) temperature
(8C), and (d) relative humidity (% RH). All verification using 40-km gridded data postprocessed from the 20-km RUC.

September to December 2002 using an OI-based cycle.
Skill for 3- and 12-h RUC forecasts verified against
rawinsonde observations has been shown to be nearly
identical from a 3DVAR-based cycle (results not
shown). This verification is performed using rawinsonde
observations as ‘‘truth’’; the forecast-minus-observation
differences, labeled as ‘‘errors,’’ in fact include both
forecast and observational error. Generally, the RUC is
successful in producing shorter-range forecasts that are
more accurate than those of longer duration. For both
wind (Fig. 9a) and temperature (Fig. 9c), this trend is
apparent in forecasts all the way down to a 1-h forecast
at almost every mandatory pressure level. In other
words, 9-h forecasts are statistically more accurate than
12-h forecasts, and even 1-h forecasts are more accurate
than 3-h forecasts. For height forecasts (Fig. 9b), short-
er-range forecasts show general improvement over 12-
h forecasts, but 1-h forecasts at some levels (e.g., 700
hPa) show less accuracy than 3-h forecasts. This is pre-
sumably due to residual mass/momentum imbalance de-
spite the balancing in the analysis increment calculation

and application of the digital filter assimilation (section
2a). A slight improvement of relative humidity forecasts
(Fig. 9d) at shorter range is evident at 700 and 300 hPa,
but some degradation is shown at 500 and 850 hPa.
Recent data sensitivity experiments by Smith et al.
(2003) suggest that allowing precipitable water obser-
vations to influence levels as high as 500 hPa in winter
may produce degraded short-range forecasts at this lev-
el, but more research is needed on this topic.

A forecast percentage improvement for an x-h fore-
cast over 12-h forecast skill is calculated as

s 2 sf212h f2x
D improvement 5 100 , (11)

s 2 sf212h a

where s f 212h, s f2x are rms or standard deviation errors
for 12- and x-h forecasts, respectively, and sa is the
analysis fit to observations (considered equivalent to a
perfect forecast, accounting for observation error). A
100% score here corresponds to a perfect forecast, and
0% means no improvement over 12-h forecast skill. The
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FIG. 9. Verification of RUC forecasts against rawinsonde observations over entire RUC domain. For the period 11
Sep–31 Dec 2002, using NCEP rawinsonde quality control flags. Rms vector difference or standard deviation difference
between observations and forecasts is shown for forecasts of 1-, 3-, 6-, 9-, and 12-h duration and for the analysis, all
valid at rawinsonde observation times (0000 and 1200 UTC): (a) wind (m s21), (b) height (m), (c) temperature (8C),
and (d) relative humidity (% RH). All verification using 40-km gridded data postprocessed from the 20-km RUC. Note
that zero line does not correspond to the left-hand side in these graphs.

percentage improvement of RUC 1-, 3-, 6-, and 9-h
forecasts has been evaluated from the same 4-month set
of RUC forecasts described in the previous paragraph
and plotted in Fig. 10. The percentage reduction of 1-
h forecast error over 12-h forecast error reaches as high
as 50% at jet level for winds, and over 30% for tem-
peratures. For heights, the projection showing the most
improvement over 12-h forecasts averaged over all lev-
els is the 6-h forecast, which reduces error by 30% at
all levels except 150 hPa. Relative humidity short-range
forecasts range from 210% to 110%, as discussed in
the last paragraph.

Overall, with some exceptions, the RUC appears to
accomplish its goal of providing improved short-range
guidance using high-frequency assimilation for condi-
tions above the surface. The statistical verification of
RUC forecasts down to the cycle period (1 h) appears
to provide a reasonable measure of the effectiveness of

the high-frequency assimilation. For winds and tem-
peratures, the 1-h cycle is clearly effective in providing
improved background forecasts for each analysis. Fig-
ures 9 and 10 indicate that there may be issues in as-
similation of surface pressure and moisture observa-
tions. These will be addressed in ongoing research to-
ward the goal of further improving overall short-range
RUC forecast skill.

An example of the progression of improved forecasts
at shorter forecast projections is presented in Fig. 11.
Forecast-minus-analysis differences for 250-hPa wind
forecasts valid at 0000 UTC 27 January 1998 are shown
for 12-, 9-, 6-, and 3-h forecasts. The overall magnitude
of the estimated error decreases as the projection de-
creases. However, the forecast improvement is not linear
in space or time but is dependent on where and when
observational data are available. For instance, the skill
of the forecast over southern California is not improved
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FIG. 10. Percentage improvement of 1-, 3-, 6-, and 9-h RUC forecasts over 12-h RUC forecasts valid at the same
time. Same period and variables as in Fig. 9.

until some data are assimilated between 1800 and 2100
UTC, resulting in an improved 3-h forecast over the
previous forecasts.

A strong test for any short-range model forecast sys-
tem to beat is a corresponding persistence forecast of
the same duration. A comparison of RUC 1- and 3-h
model forecast with 1-h persistence forecast skill is pre-
sented in Fig. 12. It was found that RUC 1-h model
forecasts actually provide improved skill over corre-
sponding 1-h persistence forecasts for all variables and
levels except for heights in the lower troposphere and
relative humidity at 300 hPa. For wind and temperature,
3-h model forecasts had approximately the same skill
as 1-h persistence forecasts. This result suggests that
the time representativeness and windowing issues dis-
cussed in section 2b are significant and that even the
RUC 1-h cycle might gain some benefit from using an
FGAT (section 2b) background for observations dis-
tributed over time within a 1-h window.

Verification of RUC forecasts out to 24-h duration
has also been performed for the same 4-month period
in 2002 from runs at the FSL. The operational RUC at
NCEP currently produces forecasts only to 12 h, as
shown in Fig. 1, but experimental RUC forecasts out to
48 h have been produced experimentally at FSL daily
since late 2000. Even though the operational niche as-
signed to the RUC is currently limited to 12-h forecasts,
the RUC prognostic model is fully capable from the
standpoint of conservation properties and physical pa-
rameterizations of running much longer forecasts. Ex-
amples of 36-h RUC forecasts at 20- and 10-km reso-
lutions are presented in Benjamin et al. (2004). Results
from RUC 24-h forecast verification are presented in
Fig. 13, along with 12-h model and 3- and 12-h per-
sistence forecast errors, again relative to rawinsonde
observations. They show that the increase of forecast
error from 12 to 24 h is modest for all four variables
shown, up to 1.6 m s21 for wind and 4 m for height at
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FIG. 11. RUC20 forecast vector difference from verifying analysis (forecast minus analysis) for 250-hPa wind forecasts valid 1200 UTC
8 Feb 2001: (a) 12-h forecast initialized at 0000 UTC 8 Feb, (b) 9-h forecast initialized at 0300 UTC, (c) 6-h forecast initialized at 0600
UTC, and (d) 3-h forecast initialized at 0900 UTC. Units in m s21.

200–300 hPa, and up to 0.48C for temperature and 3%
for relative humidity. Moreover, the 24-h RUC forecast
errors are far smaller than 12-h persistence errors (about
40%–60% of 12-h persistence forecast errors) for the
period shown for all variables. The persistence errors
shown in Fig. 13 indicate the strong variability of the
atmosphere over 12-h periods and even over 3-h periods
for the RUC domain for this period. The 3-h persistence
forecast error exceeds 12-h RUC forecast error for all
variables and levels and approximates the 24-h RUC
forecast error for winds and heights at 300–500 hPa and
RH at all levels. The levels of peak persistence error
indicate the levels of strongest change: at jet levels for

winds and heights, at tropopause level and near the sur-
face for temperature, and in the middle troposphere for
relative humidity, showing the strong control by vertical
motion.

b. Surface verification

The accuracy of RUC near-surface forecasts is strong-
ly dependent on the treatment of the land surface and
boundary layer in the RUC forecast model. These treat-
ments are described in detail in the companion paper
on the RUC model (Benjamin et al. 2004). Verification
of RUC surface forecasts was performed using all sur-



FEBRUARY 2004 513B E N J A M I N E T A L .

FIG. 12. Verification of 1- and 3-h RUC model forecasts vs 1-h persistence (1p) forecast, all valid at the same time.
Same period and variables as in Fig. 9.

face meteorological aviation report (METAR) obser-
vations available within the RUC domain. (No QC was
performed for verifying observations, resulting in some
inflation of error statistics over those if screening had
been performed.) Forecasts of four different surface var-
iables were verified: 10-m wind speed (Fig. 14), 10-m
wind vector (Fig. 15), 2-m temperature (Fig. 16), and
2-m dewpoint temperature (Fig. 17). The RUC gridded
values of 2-m temperature and dewpoint temperature
are reduced to a special terrain elevation as described
in section 4c and Devenyi and Benjamin (2003). Every
3 h, differences were calculated between METAR ob-
servations and RUC analyses and forecasts of different
durations. Statistics are presented separately for a warm-
season period (April–September 2002) and a cool-sea-
son period (October–December 2002). All RUC grids
were from the FSL backup version of the 20-km RUC,
which used code nearly identical to the NCEP opera-
tional version during this period except for the assim-
ilation of extra observations not yet available at NCEP,
including those from surface mesonetworks, GPS pre-
cipitable water retrievals, and boundary layer profilers.

In addition, the 20-km grids were first thinned to a 40-
km grid, and then grid values were bilinearly interpo-
lated to METAR locations from the 40-km grid. Our
experience is that 20-km (full resolution) surface grids
frequently show improved depictions of local circula-
tions versus 40-km grids, although 20- and 40-km fore-
cast grids (derived from the 20-km model) verify sta-
tistically against observations equally well. For analy-
ses, the statistical fit to observations is closer using 20-
km grids compared to the 40-km grids.

RUC 10-m wind forecasts were verified both for wind
speed difference (Fig. 14) and vector magnitude differ-
ence (Fig. 15) from METAR observations. The rms fit
for wind speed to METAR observations is 1.5 m s21,
increasing to 1.75 m s21 at a 1-h projection, and 2.0 m
s21 at 12-h forecasts (Fig. 15). For verification using
vector wind differences between forecasts and obser-
vations, the magnitudes are somewhat larger (generally
about 3.75–4.0 m s21) because they incorporate direc-
tion differences. These differences are smaller than
those for rawinsonde wind observations aloft (Fig. 9),
which may be expected, in part, since surface winds are



514 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 13. RUC 12- and 24-h model forecast error and 3- and 12-h persistence error, all valid at the same time,
verified against rawinsonde observations for the same period and variables as in Fig. 9.

generally lighter than winds aloft. For both wind speed
and vector wind verification, RUC forecasts show in-
creasing skill at shorter range. Moreover, both 1- and
3-h 10-m wind speed and vector RUC model forecasts
show improved skill on average over 1- and 3-h per-
sistence forecasts, respectively (Figs. 14, 15). The im-
provement over persistence for surface winds is larger
at 3 h than at 1 h.

Verification of 2-m temperature (Fig. 16) and dew-
point temperature (Fig. 17) forecasts also show that
shorter-duration RUC forecasts are more accurate than
longer-duration forecasts and provide added value, even
for 1-h forecasts. Again, 1- and 3-h prognostic forecasts
for 2-m temperature and dewpoint show improvement
over respective persistence forecasts, albeit less so than
wind forecasts, especially for dewpoint forecasts, which
show only slightly higher skill than corresponding per-
sistence forecasts. On the other hand, 2-m temperature
and dewpoint forecasts show a more steady improve-
ment in forecast skill out to 12 h, in contrast to 10-m
wind forecasts with only relatively small improvement
in forecast skill between 3 and 12 h.

RUC surface forecast skill was also stratified into day
(1500, 1800, 2100, and 0000 UTC) verification times
versus those at night (0300, 0600, 0900, and 1200 UTC;
not shown). Wind observation–forecast differences are
larger in daytime, presumably since 10-m wind speed
itself is generally higher in daytime because of boundary
layer mixing. Surface temperature and dewpoint veri-
fication shows the same pattern for the summer period:
larger observation–forecast differences in daytime.
However, temperature differences in the cool-season pe-
riod are slightly larger at night. Other surface verifi-
cation results from the 20-km RUC are presented by
Schwartz and Benjamin (2002).

6. Conclusions and plans

The Rapid Update Cycle is a 1-h assimilation/forecast
cycle that runs on a 1-h cycle at the National Centers
for Environmental Prediction to produce frequently up-
dated 3D mesoscale analyses and short-range forecasts
over the lower 48 United States and adjacent areas. The
RUC is effective in its goal of providing more accurate
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FIG. 14. Verification of RUC 10-m wind speed forecasts against
METAR observations over full RUC domain. Value (m s21) is rms
of observation–forecast difference. Two seasons are shown: 17 Apr–
27 Sep 2002 and 1 Oct–26 Dec 2002. Values are shown for RUC
forecasts of 1-, 3-, 6-, 9-, and 12-h duration, all valid at the same
time. Open squares are rms difference for 1- and 3-h persistence
forecasts using RUC analysis for each season.

FIG. 16. Same as Fig. 14, but for 2-m temperature and standard
deviation difference between METAR observations and RUC fore-
casts. Units are 8C.

FIG. 15. Same as Fig. 14, but for 10-m rms vector wind difference
between METAR observations and RUC forecasts. Units are m s21. FIG. 17. Same as Fig. 16, but for 2-m dewpoint temperature (8C).

short-range forecasts initialized with recent data than
longer-range forecasts verifying at the same time. This
is the goal, of course, of any assimilation cycle, even
on a 12-h frequency, but the RUC is unique in that it
runs on a 1-h cycle and is successful in providing im-
proved forecasts down to this projection. For all vari-
ables and levels except heights at 850 and 700 hPa, the
RUC 3- and 1-h model forecasts are more accurate than
corresponding 3- and 1-h persistence forecasts, on the
average, over a 4-month evaluation period.

Challenges to the effectiveness of a 1-h intermittent
assimilation cycle include the adequacy of observational

data to sufficiently resolve 1-h forecast error, the ability
of the forecast error covariance model to effectively
project these observations onto the true forecast error,
and the requirement that the numerical model produce
a well-balanced 1-h forecast without significant mass/
momentum adjustment. These issues were discussed,
including idealized experiments to understand the ef-
fects of time windowing on assimilation of aircraft data
and other data of opportunity not provided by a regular
network. The strategies used in the RUC to address these
issues include application of a digital filter initialization
and an adaptive forecast error covariance model set in
a quasi-isentropic vertical coordinate.

As of early 2003, the operational RUC runs at 20-
km horizontal resolution and with 50 vertical levels. A
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hybrid isentropic–terrain-following vertical coordinate
is used in both the RUC analysis and the RUC prediction
model, described in detail in a companion paper (Ben-
jamin et al. 2004). A unified analysis framework allow-
ing solutions from either optimal interpolation or three-
dimensional variational techniques has been developed
for the RUC. The unified analysis framework uses a
generalized coordinate approach, currently set as the
hybrid quasi-isentropic coordinate but capable of ac-
commodating other vertical coordinate systems as well.
The RUC analysis assimilates rawinsonde observations
and a full range of high-frequency observations, in-
cluding those from commercial aircraft, wind profilers,
VAD wind profiles from radar, satellite retrievals of pre-
cipitable water and cloud-drift winds, GPS ground-
based precipitable water retrievals, and surface stations.
Although a wide variety of observation types are as-
similated into the RUC, the high-frequency coverage is
irregular and often quite sparse in space and time even
over the RUC domain. An initial cloud analysis, using
GOES cloud-top pressure/temperature data to clear and
build cloud (modifying 3D hydrometeor mixing ratios
and water vapor mixing ratio from the RUC 1-h forecast
background field), is also included in the RUC analysis.

Extensive verification over multimonth periods of
RUC forecasts against rawinsonde and surface METAR
observations has been presented. This verification
shows that the ability of the RUC to use irregularly
distributed high-frequency observations to provide im-
proved forecasts aloft at increasingly shorter durations
is most evident for wind and temperatures, where an
increase in skill is shown down to a 1-h forecast at all
mandatory levels. For heights, 6-h RUC forecasts show
a strong improvement over 12-h forecasts valid at the
same time, but 1- and 3-h forecasts do not in the lower
troposphere. For relative humidity forecasts, this ability
for improved short-range forecasts is mixed, certainly
in part because of an absence of in situ high-frequency
moisture observations over the United States except at
the surface. One-hour RUC forecasts are shown to pro-
vide a 15%–30% reduction of 12-h temperature forecast
error over a layer from 850 to 200 hPa and a 25%–50%
reduction of 12-h wind forecast error over the same
layer. Short-range RUC forecasts of 2-m temperature
and dewpoint temperature and 10-m wind also show an
increase in skill down to a 1-h forecast over longer-
range forecasts valid at the same time. For both forecasts
aloft and at the surface, the RUC short-range forecasts
show a strong improvement over corresponding persis-
tence forecasts at 3-h and even at 1-h projections, a
difficult test for numerical forecast models at such a
short range. Wilson et al. (1998) presented a recent di-
agram with a qualitative depiction of the applicability
of different forecasting techniques, including models,
extrapolation, and expert systems for very short-range
forecasts, to the problem of forecasting convective
storm evolution. The predictability of phenomena is de-
pendent on the life cycle duration of that phenomenon,

and the life cycle of thunderstorms is certainly on a
shorter time scale than that of the phenomena generally
responsible for changes in surface and upper-air at-
mospheric measurements used in the RUC forecast ver-
ification shown in this paper. On the other hand, the
challenge for the RUC is to use irregularly spaced and
usually sparse observations to extract a net improvement
in forecast skill, which it is able to do. Verification of
RUC 24-h forecasts is also presented from a 4-month
period, showing modest growth of error from 12 to 24
h and that 24-h RUC model forecast skill approaches
that of a 3-h persistence forecast.

The operational RUC analysis changed from an OI
to a 3DVAR analysis on 27 May 2003. Other plans over
the next two years include introduction of improved
cloud/hydrometeor analysis techniques, including as-
similation of radar assimilation and surface cloud and
current weather observations, recalculation of forecast
background error covariances, testing of a diabatic dig-
ital filter initialization (Huang and Lynch 1993), and
revised techniques for assimilation of all surface ob-
servations. Improved assimilation of radar and satellite-
based observations will be introduced, especially to
strengthen short-range forecasts of precipitation. The
RUC will also move to higher horizontal resolution,
with a planned upgrade to 12–15-km resolution in 2004
or 2005.

The Rapid Update Cycle will make a transition to a
version based on the Weather Research and Forecast
(WRF) Model and assimilation system (e.g., Skamarock
et al. 2001) over the next several years. The techniques
found to be essential for effective high-frequency as-
similation in the current Rapid Update Cycle will be
incorporated, as necessary, into WRF-based versions of
future operational rapid updating assimilation and fore-
cast systems that will be descendants of the current
RUC.
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